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Problem:

In this problem, we will consider developing a Bayesian model for Poisson data; i.e., our observed

data will consist of Y1, ..., Yn
iid∼ Poisson(λ). Recall, a random variable Y is said to follow a Poisson

distribution with mean parameter λ if its pmf is given by

p(y|λ) =
e−λλy

y!
I
(
y ∈ {0, 1, 2, ...}

)
.

Note, the Poisson model is often used to analyze count data.

(a) For the Poisson model, identify the conjugate prior. This should be a general class of priors.

Solution: The conjugate prior is a Gamma distribution. To see this, impose the prior
λ ∼ Gamma(a, b). Then, we have

p(λ|y) ∝ p(y|λ) · π(λ)

∝
n∏
i=1

e−λλyi · λa−1e−bλ

= e−nλλ
∑n

i=1 yi · λa−1e−bλ

= λny+a−1e−(b+n)λ.

Therefore, the posterior for λ is Gamma(a + ny, b + n) and hence the conjugate prior
under the Poisson model is the Gamma distribution.

(b) Under the conjugate prior, derive the posterior distribution of λ|y. This should be a general
expression based on the choice of the hyper-parameters specified in your prior.

Solution: Shown above.

(c) Find the posterior mean and variance of λ|y. These should be general expressions based on
the choice of the hyper-parameters specified in your prior.

Solution: Since the posterior distribution is Gamma, we see that

E[λ|y] =
a+ ny

b+ n
and V

(
λ|y
)

=
a+ ny

(b+ n)2
.
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(d) Obtain the MLE of λ. Develop and discuss a relationship that exists between the MLE and
posterior mean identified in (c).

Solution: The log-likelihood function is

`(λ|y) = log p(y|λ) = log
n∏
i=1

e−λλyi

yi!

= log
e−nλλny∏n
i=1 yi!

= −nλ+ ny log λ−
n∑
i=1

log yi!.

Taking the derivative wrt to λ, we have

−n+
ny

λ

set
= 0

which yields that λ̂MLE = y. The relationship between the MLE of λ and the posterior
mean for λ is a weighted average. Specifically, the MLE for λ is y, and the posterior
mean can be thought of as a weighted average of y and the prior mean.

(e) Write two separate R programs which can be used to find both a (1 − α)100% equal-tailed
credible interval and a (1 − α)100% HPD credible interval for the Poisson model. These
programs should take as arguments the following inputs: the observed data, prior hyper-
parameters, and significance level.

Solution: See appendix for code. Can also email code file.

(f) Find a data set which could be appropriately analyzed using the Poisson model. This data set
should be of interest to you, and you should discuss, briefly, why the aforementioned model
is appropriate; i.e., consider independence, identically distributed, etc. You will also need to
provide the source of the data.

Solution: The dataset that I chose to analyze includes the number of major (category
3 and above) hurricanes in the United States per decade, starting in 1850 and ending
in 2000, i.e. years 1851-1860, 1861-1870, ..., 1991-2000. The source for this dataset is:
http://www.nhc.noaa.gov/pastdec.shtml. The dataset can be found in the table below:

Decade 1851-1860 1861-1870 1871-1880 1881-1890 1891-1900 1901-1910 1911-1920 1921-1930

Hurricanes 6 1 7 5 8 4 7 5

Decade 1931-1940 1941-1950 1951-1960 1961-1970 1971-1980 1981-1990 1991-2000

Hurricanes 8 10 8 6 4 5 5

It is reasonable to assume a Poisson model since we have count data, i.e. integer values
in the set {0, 1, 2, ...}. Additionally, the independent and identically distributed assump-
tions are reasonable since the amount of hurricanes in one decade does not really provide
information on the amount of hurricanes that will occur in the next decade and there is
no reason to assume more hurricanes will occur in one decade over another.
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(g) Analyze the data set you have selected in (e). Provide posterior point estimates of λ, credible
intervals, etc. Your analysis should be accompanied by an appropriate discussion of your
findings.

Solution: Using hyper-parameters of a = 0 and b = 0, the posterior mean for λ is

E[λ|y] =
a+ ny

b+ n
=

0 + 15 · 8915
0 + 15

=
89

15
= 5.933.

Also, we have the equal-tailed credible interval to be

[4.765, 7.228]

and the HPD credible interval to be

[4.724, 7.181].

Therefore, we conclude there is a 95% probability that the true value of λ falls between
4.724 and 7.181. A reasonable statement based on these findings is that the number of
hurricanes in a decade is Poisson distributed with parameter λ = 5.933. However, using
this one point estimate does not include the uncertainty for λ; i.e. it does not account
for other possible outcomes but instead only on the data that we saw.
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APPENDIX

##########################################################################
##########################################################################
######
###### Two f u n c t i o n s : one to c r e a t e (1−alpha )100% equal−t a i l e d
###### c r e d i b l e i n t e r v a l and a (1−alpha )100%
###### HPD c r e d i b l e i n t e r v a l f o r lambda .
######
##########################################################################
##########################################################################

##### (1−alpha )100% equal−t a i l e d c r e d i b l e i n t e r v a l #####

ETCI = func t i on (y , a = 0 , b = 0 , alpha ){
n = length ( y )
re turn (qgamma( c ( 0 . 0 2 5 , 0 . 9 7 5 ) , a + n ∗ mean( y ) , b + n ) )

}

ETCI(y , alpha = 0 . 05 )

##### (1−alpha )100% HPD i n t e r v a l #####

HPD. h = func t i on (y , a = 0 , b = 0 , h = 0 . 1 ){
n = length ( y )
apost = a + n ∗ mean( y )
bpost = b + n
mode = ( apost − 1) / bpost
dmode = dgamma(mode , apost , bpost )

## d iv id e by dmode below to get on s c a l e o f 0 to 1 ##
l i n t = un i root ( f = func t i on ( x ){dgamma(x , apost , bpost ) / dmode − h} ,

lower = 0 , upper = mode) $root
u int = un i root ( f = func t i on ( x ){dgamma(x , apost , bpost ) / dmode − h} ,

lower = mode , upper = 10000) $root

## c a l c u l a t e coverage , should be around (1−alpha )100% ##
coverage = pgamma( uint , apost , bpost ) − pgamma( l i n t , apost , bpost )

re turn ( c ( l i n t , uint , coverage , h ) )
}
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HPD = func t i on (h , y , alpha ){
cov = HPD. h(y , h = h ) [ 3 ]
r e s = ( cov − (1 − alpha ))ˆ2
return ( r e s )

}

h . f i n a l = opt imize (HPD, c ( 0 , 1 ) , y = y , alpha = 0 . 05 ) $minimum
HPD. h(y , h = h . f i n a l )
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